A Faster and More Accurate Way to Monitor Drought

news image
Special Stories
13 Mar 2019 3:17 AM
[Duke]  More than 2 billion people worldwide are affected by water shortages, wildfires, crop losses, forest diebacks or other environmental or economic woes brought on by drought. A new monitoring method developed at Duke University allows scientists to identify the onset of drought sooner -- meaning conservation or remediation measures might be put into place sooner to help limit the damage. They published their peer-reviewed findings February 16 in the journal Agricultural and Forest Meteorology. “By combining surface and air temperature measurements from thousands of weather stations and satellite images, we can monitor current conditions across an entire region in near real time and identify the specific places where drought-induced thermal stress is occurring,” said James S. Clark, Nicholas Professor of Environmental Sciences at Duke’s Nicholas School of the Environment. [A new monitoring method created at Duke University identifies the onset of drought faster and more accurately than other methods now in use. Monthly maps are posted on a public website to make the updated data widely available. (Credit: Duke Univ.)] Clark and his colleagues have created a free public website, called Drought Eye, where they post monthly maps pinpointing locations across the continental United States where drought conditions may be occurring, based on the latest thermal stress data. The thermal stress they’ve measured is the difference between the air temperature at a site and the surface temperature of the plant canopy there. Ordinarily, these canopies are cooled by water evaporating into the air through small pores, or stomata, in the plants’ leaves. This explains why midday temperatures in a forest in summer are cooler than in a city. During prolonged periods without rain, however, the cooling mechanism breaks down. Ground moisture available to the trees becomes limited. To conserve their water supply, the trees close their stomata, allowing the canopy’s surface to heat up. “This led us to speculate that the canopy-atmosphere differential could provide a simple but highly accurate indicator of drought-induced water stress on a continental scale during warm and dry seasons, when the threat of wildfires and other impacts is most severe and timely monitoring is essential,” said Bijan Seyednasrollah, a 2017 graduate of the Nicholas School, who led the research as part of his doctoral dissertation. To test the hypothesis, he used measurements of thermal stress from thousands of sites to retroactively “predict” drought conditions across the contiguous U.S. over the past 15 years. He then ran similar tests using other widely employed drought indices to see which of the methods, new or old, produced results that most closely mirrored the historical record. “Among the drought metrics that we considered, thermal stress had the highest correlation values and most accurately ‘predicted’ the onset of drought in a wide range of atmospheric and climate conditions,” said Seyednasrollah, who is now a postdoctoral environmental scientist at Harvard University and Northern Arizona University. The new index will enable local authorities to determine the risks of wildfires or identify areas where water use should  be restricted in a more timely manner, Clark says. It can also reveal areas where forest dieback -- which affects forest health and can add to wildfire risks -- is occurring, because trees stop transpiring when they start to die. These diebacks are often linked to pest infestations or other environmental stresses, and are a huge problem in many parts of the West. Edited for WeatherNation by Meteorologist Mace Michaels
All Weather News
More
Watching a Low in the Gulf for Potential Tropical Development

Watching a Low in the Gulf for Potential Tropical Development

Thursday is the official start of the Atlanti

31 May 2023 7:00 PM
Severe Weather Continues Across the Great Plains

Severe Weather Continues Across the Great Plains

We have had a nearly stagnant pattern through

31 May 2023 6:15 PM
Early Summer Heat for Northern U.S.

Early Summer Heat for Northern U.S.

Meteorological Summer begins on June 1, but s

31 May 2023 6:10 PM
Wildfire Smoke in the Northeast & Fire Threat in the Southwest

Wildfire Smoke in the Northeast & Fire Threat in the Southwest

Fires in Nova Scotia, Canada, have been ragin

31 May 2023 6:05 PM
Cutoff Low Brings Daily Storm Chances to the Southwest

Cutoff Low Brings Daily Storm Chances to the Southwest

A cutoff area of low pressure is migrating fr

31 May 2023 1:10 PM
Flood Threat Continues in the Northwest With More Heavy Rain Ahead

Flood Threat Continues in the Northwest With More Heavy Rain Ahead

Flooding concern arose across the Snake River

31 May 2023 1:05 PM
Strong Storms for Minnesota & Iowa

Strong Storms for Minnesota & Iowa

The Storm Prediction Center has issued a MARG

31 May 2023 12:50 AM